ADDENDUM TO ANNOUNCEMENT RELEASED 18 MAY 2022 "CULPEO IDENTIFIES MULTIPLE NEW REGIONAL TARGETS AT LANA CORINA" Culpeo Minerals Limited (**Culpeo** or the **Company**) (**ASX:CPO**) provides the attached updated JORC Table 1 (Sections 1 and 2) for more fulsome disclosure at the request of ASX, which should be read in conjunction with the Company's announcement titled "Culpeo identifies multiple new regional targets At Lana Corina" released on 18 May 2022. This announcement has been authorised by the Board of Directors of Culpeo Minerals Limited. #### **COMPANY** Max Tuesley Managing Director E: max.tuesley@culpeominerals.com.au P: +61 (08) 9322 1587 ## **MEDIA/INVESTORS** Peter Taylor NWR Communications E: peter@nwrcommunications.com.au P: +61 (0) 412 036 23 #### **Competent Persons' Statements** The information in this announcement that relates to Exploration Results is based on information compiled by Mr Maxwell Donald Tuesley, BSc (Hons) Economic Geology, MAusIMM (No 111470). Mr Tuesley is a member of the Australian Institute of Mining and Metallurgy and is a shareholder and Director of the Company. Mr Tuesley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Tuesley consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. The information in this announcement that relates to Geophysical Results is based on information compiled by Nigel Cantwell. Mr Cantwell is a Member of the Australian Institute of Geoscientists (AIG) and the Australian Society of Exploration Geophysics (ASEG). Mr Cantwell is a consultant to Culpeo Minerals Limited. Mr Cantwell has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources & Ore Reserves. Mr Cantwell consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. # Appendix A JORC Code Table 1 – Lana Corina Project ## **SECTION 1 SAMPLING TECHNIQUES AND DATA** | Criteria | JORC Code explanation | Commentary | |--|--|---| | Sampling
techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. | Ground Magnetic Data was collected using a GEM GSM-19W Magnetometer, data were quality checked by Quantec and geophysical consultants in Perth, Australia, and were considered to be of excellent quality. | | | Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. | Geochemical sampling was undertaken
in an area of 800 x 700 m for a sample
spacing of 50 x 50 m and sometimes 25 x
25 m. 192 samples were extracted and
192 copper analyses and 70
molybdenum analyses were performed. | | | Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation' drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | | | Drilling
techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc.). | N/A as no new drilling results are being reported. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. | N/A as no new drilling results are being reported. | | | Measures taken to maximise sample recovery and ensure representative nature of the samples. | | | | Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. | N/A as no new drilling results are being reported. | | | Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. | | | | The total length and percentage of the relevant intersections logged. | | | Sub-sampling techniques and | If core, whether cut or sawn and whether quarter, half or all core taken. | N/A as no new drilling results are being reported. | | sample
preparation | If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. | | | | For all sample types, the nature, quality and appropriateness of the sample preparation technique. | | | | Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. | | | | Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. | | | | Whether sample sizes are appropriate to the grain size of the material being sampled. | | | Quality of assay
data and
laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. | Magnetic surveys were ground-based
surveys, measuring Total Magnetic
Intensity, with a 1s recording interval. | | | For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including | o Data units were nanotesla (nT). | | Criteria | JORC Code explanation | Commentary | |--|---|--| | | instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | Data was collected by Quantec Geoscience (Chile), covering 150 line kms at a 25m spacing. The Magnetometer was a GEM GSM-19W with a Overhauser Effect Sensor Type, mounted on a 2m staff. The control point location was 296647 E, 6555150 N (PSAD56, Zone 19S) (repeated at beginning and end o survey each day) | | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data | N/A as no new drilling results are being reported. | | | verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. | N/A as no new drilling results are being reported. | | | Specification of the grid system used. | | | | Quality and adequacy of topographic control. | | | Data spacing | Data spacing for reporting of Exploration Results. | The historical drilling and surface
sampling are widely spaced and no
systematic sampling/drilling grid has
been implemented. In general, the
mineralisation strikes in a north-east | | and distribution | Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied | | | | Whether sample compositing has been applied. | direction and drilling has been
undertaken perpendicular to that. | | Orientation of
data in relation
to geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. | N/A as no new drilling results are being reported. | | | If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | | | Sample security | The measures taken to ensure sample security. | N/A as no new drilling results are being reported. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No records are available for the historic
sampling, but it is assumed no audits
have been completed. | # **SECTION 2 REPORTING OF EXPLORATION RESULTS** | Criteria | JORC Code explanation | Commentary | |--|--|---| | Mineral tenement
and land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The project area comprises nine exploitation concessions, which cover a total area of approximately 550 Hectares. Culpeo Minerals has agreements in place to earn up to 80%. | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | Historically three companies have undertaken exploration in the project area. These include: | | Geology | Deposit type, geological setting and style of mineralisation. | The prospect is associated with a structural belt orientated in a NE-SW direction, about 1,000m long and 400m wide. The near surface part of the mineralised system is associated with three breccia pipes and below this a mineralised copper / molybdenum porphyry. Around the edges of the main mineralisation are a series of gold, gold-copper and barite veins. | | Drillhole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length | N/A as no new drilling results are being reported. | | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. | N/A as no new drilling results are being reported. | | Relationship
between
mineralisation
widths and intercept
lengths | If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | N/A as no new drilling results are being reported. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | Diagrams are included in the main body of the report. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | N/A as no new drilling results are being reported. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | A ground magnetic survey has recently been completed, covering 150 line kms at a 25m spacing. Historic geochemical survey undertaken in an area of 800 x 700 m for a sample spacing of 50 x 50 m and sometimes 25 x 25 m. 192 samples were taken (192 copper and 70 molybdenum analyses | | Criteria | JORC Code explanation | Commentary | |--------------|--|--| | _ | | Two programs of geophysics have been
undertaken over the project area. | | | | In 2015 an IP survey was undertaken by
Geodatos, where data was collection over
7.6 line km. A second IP survey was carried
out in 2018, also by Geodatos with data
being collected over 12.2 line km. | | Further work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). | A drilling program to test the near surface
breccia pipe hosted mineralisation and
deeper porphyry style mineralisation is
currently underway. | | | | The recently acquired ground magnetic
data is now being modelled and target
ranking will be undertaken. |